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SUMMARY 
This paper addresses the spin-up from rest of a free-surface fluid confined in a cylindrical container with a 
semicircular cross-section. The flow in the various stages of the spin-up process has been calculated 
numerically by using the finite-volume technique on a three-dimensional grid. Local grid refinement was 
applied in order to capture the effects of the boundary layer at the lateral boundaries and of the Ekman layer 
at the bottom. The numerical results agree very well with laboratory observations. 
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1. INTRODUCTION 

The spin-up of a homogeneous fluid in a container, either from rest or from a state of slower solid- 
body rotation, is a fundamental problem in fluid mechanics. The problem, apart from being 
interesting from the pure scientific point of view, has many applications ranging from engineering 
to geophysical situations. Most previous studies concerned the spin-up of fluid contained in an 
axisymmetric tank, and a review of earlier works on this problem is given by Benton and Clark.' 

It was pointed out by Greenspan and Howard' that the Ekman layers at  the horizontal 
boundaries of the flow domain play a crucial role in the spin-up process in generating a secondary 
circulation in the meridional plane. In a thorough analysis of the linear case, i.e. the spin-up from 
an initial state of solid-body rotation at angular speed R to an ultimate state of solid-body 
rotation at speed R + AR (with AR @a), they derived the timescale of the adjustment process to be 
T, = E -  - T= H/(vR)'/*, with T= 2n/R the rotation period, H the height of the closed container, 
v the kinematic viscosity, and E = v/RH ' the Ekman number. In later studies it was found that this. 
timescale also applies to the non-linear case (AR - R). Although this type of spin-up is already 
rather complicated, the presence of a density stratification further complicates the adjustment 
process to a considerable degrees3-' 

Recently it was demonstrated in experimental studies by van Heijst* and by van Heijst et aL9 
that the spin-up process in non-axisymmetric containers displays some new features not observed 
in the axisymmetric cases. The authors considered a number of different container geometries 
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(annular tank with a radial barrier, semicircular tank, square tank), and it was found that the 
adjustment to the ultimate solid-body rotation was characterized by three principal stages, 
namely (i) the zero-vorticity starting flow, followed by (ii) flow separation from the lateral tank 
walls, leading to irregular flows, soon followed by (iii) organization of the flow into a regular cell 
pattern. Once this cellular pattern is established, the flow becomes quasi-stationary, and gradual- 
ly decays due to the Ekman layers at the horizontal boundaries, until the ultimate state of rigid- 
body rotation is reached. This phenomenon of ‘self-organization’ into a number of cells is 
attributed to the two-dimensional (2D) nature of the rotating flow. Apart from the starting flow 
(which can be described in terms of potential theory), the flow in the subsequent stages is rather 
complicated, and does not allow a straightforward analytical description. 

In order to obtain a deeper insight into the flow during the various stages of the spin-up 
process, it was therefore decided to perform a numerical simulation of the unsteady flow by 
integrating the incompressible Navier-Stokes equations in time. This is not a simple task, since 
three-dimensional (3D) effects (the presence of the Ekman layer at the bottom) play a crucial role 
in the adjustment process. However, the finite-volume concept of Billdal and Andersson’O for 
unsteady viscous flow problems, which recently proved successful in predicting time-dependent 
flows in rotating and non-rotating 2D configurations, can undoubtedly be generalized to 3D 
situations. In this paper the numerical results of a time-dependent 3D simulation of the spin-up 
are compared with laboratory observations for one particular case, viz. that of the semicircular 
tank described by van Heijst.’ In order to facilitate this comparison and enhance the understand- 
ing of the flow phenomena, the sequence of streakline photographs in Reference 8 is supple- 
mented by streakline patterns at intermediate time levels. Moreover, a quantitative comparison is 
made possible through the new data for the time-varying position of the separation point at the 
plane wall. 

The experimental arrangement consists of a cylindrical tank (inner diameter 92.5 cm, working 
height 35 cm), placed concentrically on a turntable. The angular speed R of the turntable is 
adjustable in the range of &2 rad s - I .  The tank is filled with a homogeneous fluid with density p 
and kinematic viscosity v.  A solid wall is placed along a diameter, so that the tank is divided into 
two areas of semicircular cross-sections. Hereafter, attention is focused on only one of these flow 
domains. Initially (t c 0), R = 0 and the fluid is completely at rest, with a uniform depth H. At t = 0 
the table starts rotating, and its angular speed is quickly brought to some fixed value R > 0. The 
resulting flow is visualized by small tracer particles floating on the free surface of the fluid. A 
photo camera is mounted in the rotating frame, at some distance above the free surface. The 
streak photographs obtained with a prescribed exposure time z allow accurate measurement of 
the velocity field at the upper surface, which is assumed to be representative of the flow at lower 
levels (but outside the bottom Ekman layer). 

The adjustment of the flow to the ultimate state of solid-body rotation at speed R is 
characterized by a number of stages, which were first described by van Heijst*: immediately after 
the start of the experiment the relative flow has the appearance of a large cell of retrograde 
(anticyclonic) motion, filling the domain completely. Soon thereafter, flow separation is observed 
to occur at the downstream ends of the flat and the curved lateral boundaries of the flow domain. 
This flow separation results in the formation of cyclonic flow cells, which are seen to merge in the 
next stages, largely destroying the original anticyclonic cell. Eventually, a more or less steady two- 
cell pattern is established, consisting of a cyclonic and an anticyclonic cell. This relative motion 
gradually decays as a result of the ‘ordinary’ spin-up/spin-down mechanism provided by the 
Ekman layer at the bottom of the container. 

In the present paper the results of the time-dependent 3D numerical simulation of this spin-up 
flow is compared with the laboratory observations. Along with a qualitative comparison of the 
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subsequent flow patterns, a more quantitative comparison is made as well, viz. by considering the 
time-dependent position of the separation point at the flat wall. In addition, the numerical 
simulation provides information about the secondary meridional flow, the bottom Ekman Iayer, 
and the changing spatial vorticity distribution of the flow field; this information is not readily 
available in the laboratory, but is nevertheless important in order to obtain a better understand- 
ing of the flow evolution. 

The sequel of the paper is organized as follows: the mathematical problem is formulated in 
Section 2, followed by a description of the numerical techniques in Section 3. The numerical 
results are presented in Section 4, and a comparison is made with the laboratory experiments. 
Finally, some conclusions are given in Section 5. 

2. MATHEMATICAL MODELLING 

2.1. Governing equations 

Unsteady motion of a viscous fluid obeys the time-dependent Navier-Stokes equations. The 
governing equations in primitive variables for the flow of an incompressible fluid with constant 
density in a rotating frame of reference are the mass continuity 

and the momentum equation 

where p is the pressure and ui denotes the velocity component in the qdirection in a Cartesian 
co-ordinate system. Here, C2 is the constant angular velocity of the reference frame, r is the 
position vector in the rotating frame, p is the density and p is the viscosity of the fluid, while 6, 
and &ijk are the Kronecker delta and Levi-Civita symbols, respectively. The convective terms on 
the left-hand side of equation (2) are intentionally expressed in conservative form. The terms on 
the right-hand side, which arise only in rotating co-ordinate systems, represent the fictitious 
Coriolis and centrifugal forces per unit volume. 

2.2. Boundary conditions 

The specification of the problem is completed by the boundary conditions 

at a solid wall, and 

uiNi=O (4) 

at a passive free surface of the fluid. Here, equation(3) is the standard no-slip condition for 
viscous flow past a solid surface. The more relaxed condition (4), in which Ni denotes a 
component of the unit vector normal to the boundary r, allows the fluid to slip past the free 
surface but not to penetrate into it. The latter condition is routinely used in numerical analyses of 
inviscid flow phenomena. 

Assuming that elevations and depressions of the free surface are small compared with the 
total fluid depth H, the topographical surface is approximated by a fictitious horizontal flat 
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surface. The slip-flow condition (4) is then imposed along this artificial boundary, while the 
pressure is treated as an unknown variable. The resulting pressure variation along the boundary 
is believed to mimic the real topography of the free surface, i.e. high-pressure regions are 
associated with surface elevations while low-pressure zones correspond to depressions of the free 
surface. This approach is analogous with the 'rigid lid' approximation, which has been success- 
fully used by Rastogi and Rodi" and Leschziner and Rodi'' in their numerical predictions of 
open-channel flows. 

The semicircular flow domain considered in this paper is most conveniently described in terms 
of cylindrical polar coordinates (r, 8, z), with r measured from the (rotation) axis of the system. 
The fluid domain is then defined by O Q  r Q R; O,< 8 d n; Od z Q H. The boundary condition (3) thus 
applies to the bottom { O G r G R ;  0 G 8 G n ;  z=O} and to the side walls { O Q r d R ;  8=0, n; 
0 < z Q H) and { r = R; 0 Q 8 < n; 0s z ,< H), whereas the free-surface condition (4) applies to 
{OdrdR;  O d 8 G n ;  z = H } .  

3. NUMERICAL METHOD 

The finite-volume method has proved successful in predicting steady flows in complex 3D 
configurations. An approach based on Chorin's artificial compressibility concept' has recently 
been used to solve inviscid14 as well as viscous'5 and turbulent16 flow problems. In this approach 
the steady-state solution is obtained as the ultimate solution of a pseudo-transient calculation, in 
which the time involved has no physical meaning. Accordingly, the pseudo-time-stepping acts 
simply as an iterative procedure for the solution of the steady-flow equations. 

To carry the attractive features of the finite-volume method over to time-dependent flow 
problems, a fractional step approach is adopted. The explicit solution of the time-dependent 
momentum equations is then decoupled from the solution of the mass continuity equation, and 
an essential part of the algorithm becomes the solution of a Poisson-type equation. 

3.1. Finite volume formulation 

and (2) for a small control volume V with surface S becomes 
The integral formulation of the time-dependent, incompressible Navier-Stokes equations (1) 

ui ni dS =0, b 
where v = p/p is the kinematic viscosity of the fluid and ni is the component in the xi-direction of 
the unit vector normal to the surface S. 

3.2. Time integration 

The basic principle of the fractional step method, as introduced independently by C h ~ r i n ' ~  and 
Temam," is that the time evolution is split into intermediate steps. In the explicit version of the 
method described by Fortin et a1.,19 a first-order accurate Euler scheme is used for the 
discretization in time. Here, this method is adapted to the finite-volume formulation of the 
governing equations. The time derivative on the left-hand 'side of the momentum equation (6) is 
first replaced by an explicit first-order difference approximation. Each time step is subsequently 
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split into two fractional steps, and the resulting equations for each fractional step can be 
expressed in semidiscretized form as: 

where the superscripts signify the actual time levels, At is the time increment between time levels m 
and m + 1, and u: denotes the intermediate, or tentative, velocity field. It should be noticed that 
u:, which carries the correct vorticity, generally fails to satisfy mass continuity. 

An essential feature of the decomposition given by equation (7) and (8), is that the tentative 
velocity field uf can be calculated explicitly from equation (7), while the new velocity field uy+' is 
related to the new pressure field p m + l  by equation(8). Thus, by taking the divergence of 
equation (8), imposing the continuityconstraint (5) at time level m+ 1, and subsequently making 
use of Gauss divergence theorem, we obtain 

This equation is readily recognized as an integral form of a Poisson equation for the pressure 
increment p m + ' - p m ,  in which the surface integral on the right-hand side represents the net 
volume flow due to u? out of V. The resulting solution algorithm, therefore, consists of the 
following three basic steps: 

(i) Solve (7) explicitly for u:, 
(ii) Solve (9) for the pressure increment pm+' -p"; 
(iii) Evaluate the new velocity field uy" from (8). 

3.3. Boundary conditions 

Provided that the boundary conditions imposed on the pressure field are consistent with 
equation (8), the solution for the velocity field uT+ turns out to be independent of the boundary 
conditions imposed on the tentative velocity uf (see e.g. Peyret and Taylor''). Therefore, we 
impose the boundary condition lV, u:N,dV= uT+' N,dV (10) 1". 
along the entire boundary of the calculation domain, see Figure 1. Here, V' denotes the 
volume of a cell with surface S', shifted with respect to the computational cells such that the 
midpoint of V' falls on the boundary of the calculation domain. Equation(8) may then be 
expressed for the shifted volume V rather than for V. By projecting this equation on the direction 
normal to the boundary r, i.e. multiplying by the unit vector N i  normal to r, the left-hand side of 
the resulting equation vanishes and we obtain 

n n . .  

(p"' ' - p " )  niNi dS = - p " )  Ni d V =  0 
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Figure 1 .  Shifted control volume V' with surface S' (broken lines) at the boundary r of the calculation domain 

which is readily recognized as an integral form of a Neumann-type boundary condition. It should 
be emphasized that equation (10) is a condition only on the component of u* which is normal to 
the boundary r. According to equations(3) and (4) uiNi is supposed to vanish all along the 
boundary of the calculation domain. The left-hand side of equation (10) should, therefore, be 
equated to zero at the passive free surface as well as along the solid container walls. 

3.4. The Poisson equation for pressure 

An essential and time-consuming part of the numerical algorithm is the solution of the 
Neumann problem defined by the Poisson-like equation (9) subject to the Neumann-type 
boundary condition (11). In fact, this elliptic problem has to be solved accurately at each time 
level throughout the calculation. For this purpose a rather simple and yet fairly effective method 
has been employed, namely, Gauss-Seidel iterations by lines. The resulting tridiagonal matrix is 
then solved by the Thomas algorithm. 

In a recent comparative study2' of the flow over an impulsively started circular cylinder on a 
2D 129 x 65 computational mesh, the present solution strategy for the Neumann problem proved 
to be as efficient as a more advanced multigrid solver. This somewhat surprising observation 
arises because the multigrid cycle cannot be effectively vectorized for the CRAY X-MP vector 
machine. 

3.5. Space discretization 

Following a fairly standard approach, the computational domain is divided into a number of 
hexahedral cells forming the computational mesh. The index system i,j, k is aligned with the 
curvilinear co-ordinates where i, j, k are indices of the cell in which the flow quantities are 
updated, see Figure2. By walking in the positive i-direction, we arrive next at cell i + l , j , k ,  
thereby crossing the i = constant cell wall which is labeled i + 1/2, j, k. Applying the cell-centred 
finite volume discretization technique to the momentum equations (7) on an arbitrary non- 
orthogonal structured grid, we obtain the following scheme: 

voLi, j .k(v:j ,k L v ? j , k ) / A t  + Fi+ 1/2. j , k  - F i -  1/2, j .  k +  Gi, j +  l / Z . k - G i ,  j- 1 / Z , k  

+Hi, j , k +  1/2 -Hi ,  j . k -  112 =voLi, j ,  k R i ,  j . k  (12) 
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Figure 2. The surface area vectors SI, SJ and SK of a hexahedral cell in the three index directions i ,  j and k 

where VOLi,j,k is the volume of the grid cell containing the velocity vector vi,j,k and 
Fii j , k ,  Gi, j +  Hi, j ,ki  are the approximated integrated flux of momentum through the 
six cell walls. The right-hand side vector R contains lower-order terms due to centrifugal and 
Coriolis terms in the rotating co-ordinate system. 

i.e. by using averages of the cell-centred values as approximations of wall-centred values. Rizzi 
and Eriksson”, for instance, provided explicit expressions for inviscid contributions to the flux 
vectors F, G and H. The viscous part, which is of crucial importance in the present study, is 
calculated by first approximating the gradients of u, u, w at the wall centres and then using these 
values directly in evaluating the diffusive fluxes. However, for standard definition of the flux 
terms, i.e. 

The inviscid fluxes in the three co-ordinate directions are computed in standard 

T =  v [VV+(VV)T] (13) 
it is possible to combine these two steps and thereby obtain a simple expression for the integrated 
flux. For example, the integrated flux of momentum due to viscosity between grid cells i,j, k and i 
+ l,j, k can be approximated by 

+ (SI -;) SJ + (SI -:) SKI} i +  112. j , &  

where all terms are evaluated at i+ 1/2, j ,  k. The metric term SI(i+ 1/2,j, k) is here the standard 
normal surface area vector (nS) for the cell between grid cell i, j, k and i+ l,j, k (see Figure 2) and 
is, therefore, easily obtained. However, the corresponding normal surface area vector in the j -  
direction, SJ, is in the standard implementation only defined for integer i, k values and fractional j 
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values. We are thus forced to construct M(i+ 1/2, j, k) in a non-standard manner. Here, we 
choose to approximate it by averaging the four nearest available vectors, i.e. 

(15) 

(16) 

(17) 

Mi+ 1/2. j , k =  1/4(sJi, j -  1 /2 ,k+=i .  j+ 1 / 2 , k + = i +  1.j- 1 / 2 , k + = i +  l,j+ 112.k). 

SKi+ 1 / 2 ,  j, k = 1/4(SKi, j. k -  112 + SKi, j , k +  1/2 +SKi+ 1. j , k -  112 +SKi+ 1. j , k +  112 1. 

voL,';1/2, j, k = 1/2 (V0Li-i f + VOL,', , j ,  k). 

For the same reason SK(i+ 1/2, j, k) is approximated as 

The remaining metric term VOL- ' is finally approximated by 

The derivatives of the velocity vector v = (u, u, w )  with redpect to the three co-ordinate directions 
i, j, k are approximated by 

(av/ai)i+ 112. j , k  = v i +  1. j ,k-vi , j ,k  

( av /a j ) i+ l /2 , j , k=  1/4(Vi.j+l.k+Vi+l.j+1.k-vi,j-l.k-Vi+l,j-l.k) (18) 

(av/ak)i+ 1/2. j . k =  1/4(vi. j .k  + 1 + "i+ 1. j . k +  1 -vi. j . k -  1 -vi+ 1, j . k -  1 1. 

Equations (12H18) constitute a formula by which the viscous momentum flux across an inner 
constant4 cell wall can be approximated in terms of the standard metric quantities SI, SJ, SK and 
VOL. Analogous formulas can be written for the fluxes in the j- and k-direction. 

Figure 3. Finite-volume mesh (79 x 30 x 23 points): (a) top view; (b) side view (vertical midplane) 
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If i =  1/2 is a solid wall, the no-slip boundary conditions are easily obtained by using the fact 
that v and the derivatives of v along the solid wall are zero. Equation (14) will then reduce to 

The gradient of the velocity on the right-hand side is evaluated by one-sided differences. Since the 
viscous terms are completely centred and the computational molecule is as compact as possible, 
the discretized form of these terms is consistent with the second-order accuracy obtained for the 
inviscid flux terms. 

The central difference approximations used in this finite-volume scheme give rise to oscil- 
lations. Therefore, some numerical damping terms have to be added to the scheme in order to 
damp the short wavelengths. The total difference operator may accordingly be split into the 
physical difference operator S,,, that results from equation (12) by adding the appropriate 
boundary conditions, and the dissipative part S,(v). The scheme of the momentum can now be 
written as:" 

voLi, j, kCv; j. k - vTj, k )  = sph(v)i ,  j, k + sn (v)i .  j , k .  (20) 
In the interior cells of the computational domain, the numerical damping operator is defined by 

a fourth-order central-difference operator:" 

S , ( v ) i ,  j. k =  - e4(6! + 87 + 6 , 4 ) v i ,  j . k r  (21) 
where 

6 . v .  . = v .  
L I ,  J .  k L + 112, j, k - vi - 1/2 ,  j ,  k .  

Equivalent operators are adapted for ajvi+ j,k and 8 k V i , j , k .  As can be seen here, the smoothing 
operator in 3D is treated as the sum of three 1 D smoothing operators, one in each grid direction. 
The parameter e4 is a user-defined constant, which is kept within the range 0.05 <e,b0.10 during 
the calculations. 

The right-hand side of equations (8) and (9) are calculated in standard manner, i.e. by using the 
average of cell-centred values for the two cells that share the wall multiplied by the corresponding 
metric terms. The pressure gradient on the left-hand side of equation (9) can be evaluated in the 
same manner as the viscous terms in the momentum equations. For example, the integrated flux 

Figure 4. Predicted velocity vector field at the upper surface at r=0,12T compared with the streamline pattern* 
according to potential theory. A velocity vector having magnitude RR has a length of 0 1  14R, and T =  2n/n = 8.3s is the 

rotation period 
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Figure 5. (Continued) 
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Figure 5. A sequence of velocity vector plots illustrating the predicted evolution of the free-surface flow: (a) t=0,4T; 
(b) t=O7T; (c) t= l .OT;  (d) t =  1.3T; (e) t =  14T;  (f) t=2.4T; (g) t=3,6T. The scale of the velocity vectors is the same as 

in Figure 4. 

of p / p  at cell wall i +  1/2,j, k can be approximated by 

Analogous formulas can be written for the corresponding fluxes in the j -  and k-directions. 
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Figure 6. (Continued) 
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Figure 6. A sequence of streakline photographs showing the evolution of the relative free-surface flow observed in the 
laboratory:(a) f=0.4T;(b) t=O7c(c)  f=I.OT;(d)t=1.3T;(e) f = l . g ~ ( f ) f = 2 . 4 T ; ( g ) t = 3 . 6 ~ .  Exposure time I s .  Here, 

(a), (c), (e) and ( f )  have been reproduced from Reference 8 with permission from Cambridge University Press 

3.6. Computational details 

To facilitate direct comparisons between calculations and experiments, the numerical simu- 
lation is carried out with flow parameters identical to those in the experiment reported by van 
Heijst' (see the Figures 1&12 in that paper), i.e. with H =  12.5 cm, R=46.2 cm, R=0.756 rads-', 
and v =  1.0 x m2 s-'. For this particular case the Reynolds number based on the wall velocity 
RR and the Ekman number are Re=RR2/v= 1.6 x lo5 and E=v/RH2=8.5 x lo-', respectively. 

The grid system used in the calculation consisted of 79 (azimuthal) x 30 (radial) x 23 (vertical) 
points. To.obtain a refined mesh in the vicinity of the solid boundaries, i.e. along the vertical side 
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walls and the horizontal bottom, the grid points were non-uniformly distributed in the radial and 
vertical directions (see Figure 3). A preliminary simulation with only 16 points in the vertical 
direction failed to capture the characteristic velocity overshoot in the bottom Ekman layer, while 
the refined grid with 23 vertical points accurately resolved the velocity gradients of the crucial 
bottom layer. 

At each time level the iterative solver for the Poisson equation (9) was run until the global error 
became less than m3 s - ~ .  To assure stable evolution of the flow field, extremely small time 
steps At were required during the first stages of the simulation. Although the time step could be 
gradually increased throughout, a total number of some 30000 steps was required for the solution 
reported herein. The computer time for the total simulation was about 5 h of CPU-time on the 
CRAY X-MP 216. 

4. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS 

The evolution of the flow field at the free surface, as obtained in the numerical simulation, is 
shown by the velocity vector plots presented in Figures 4 and 5. For a convenient comparison, a 
sequence of streakline pictures-taken at times corresponding with the numerical results in 
Figure 5-is shown in Figure 6. It is clear that the computed solution corresponds very well with 
the laboratory observations. The starting flow (Figures 4 and qa)) has indeed the shape of a single 
anticyclonic cell, for which the streamlines were calculated by van Heijst* by use of potential 
theory. Also, the separation at the downstream ends of both the flat wall and the circular tank 
wall, as observed in the experiment (Figures 6(b) and 6(c)), is very well captured by the numerical 
calculation (Figures 5(a)-5(c)). The time scales of the numerical and experimental results do not 
match exactly, but this is most likely due to the fact that it takes some time in the experiment (a 
few seconds, typically) to bring the table rotation speed from 0 to R. The subsequent growth of the 
cyclonic cells in the corners of the flow domain (Figures 5(d) and 5(e)) corresponds with the 
observed flow pattern (Figures qd) and 6(e)). 

However, for progressing time it is observed in the laboratory that the cyclonic cells shift 
toward the centre, thereby squeezing the original anticyclonic cell (Figure 6(f)), which ultimately 
disappears; after merging of the cyclonic cells, only a single cyclonic cell is left in the centre of the 
flow domain (see Reference 8, Figure lqe)). This shift of cyclonic cells toward the rotation axis is 
ascribed to the topographic effect of the curved upper surface (References 8 ,9  and 24), and it is 

A 

x/D 0.3 

1;; i', , , , , , , , , , , :,:f;:,I 
x/D Num. 

0 
0 0.5 1 I .5 2 

t/T 

Figure 7. The time-dependent position of the separation point at the flat wall as observed in four laboratory experiments 
and according to the numerical simulation (see inset for meaning of the symbols). The position x, measured from the 
downstream end of the flat wall, is non-dimensionalized by D = 2 R ,  whereas time t is scaled by the rotation period T 
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expected that the behaviour of the cyclonic vortices would have been different if the experiment 
were performed with a rigid lid on top of the fluid. The boundary conditions (4) imposed on the 
upper surface in the numerical calculation correspond with a rigid lid (with zero shear stress) 
rather than a free surface, and the different behaviour of the cyclonic cells in the computed flow 
field confirms the expected role of the free surface. 

A characteristic feature of the evolution of the flow field in Figures 5 and 6 is the shifting 
position of the separation point at the flat wall. Experimentally it is not easy to determine such a 
moving separation point very accurately, but nevertheless it was attempted by observing (from 
subsequent photographs) the orientations of some 25 thin flexible yarn threads fixed at regular 
distances along the downstream half of the flat wall, close to the free surface. Results obtained in 
four (repeated) experiments are shown in Figure 7, together with a set of data obtained in the 
numerical simulation: the scaled position x / D  of the stagnation point, measured from the 
downstream end of the flat wall, is plotted versus the non-dimensional time t/T, with T the 
rotation period of the tank. Although there is some scatter (which is mainly due to the 
experimental inaccuracy), the data points appear to lie in a well-defined band, indicating a good 
correspondence between experiments and simulation. 

The numerical calculations are essentially 3D; it is, therefore, possible to check to what extent 
the motion in the bulk region (outside the viscous boundary layers) is 2D. The evolution of the 
secondary flow pattern in the (I, &plane at t?=?r/2 is illustrated by the plots in Figure 8. In the 
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Figure 8. (Continued) 
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Figure 8. A sequence of velocity vector plots showing the predicted evolution of the secondary circulation in the (vertical) 
(r, z)-plane at O=x/2. The curved boundary ( r = R )  is on the left, and the flat wall on the right of the pictures: (a) t=0,4T; 
(b)t=0,7T; (c)t=l.OT; (d)t=1.3T; (e)t=1.8T; ( f ) t=2,4T; ( g ) t = 3 , 6 T .  A velocity vector having magnitude ClR has a 

length of 0.228R 

initial stages (Figure 8(at8(e)) a weak radial flow in the bulk region is observed from the curved 
boundary into the interior region, whereas a more intense 2D radial inflow into the interior takes 
place at the flat boundary. The vector graphs clearly demonstrate the importance of the bottom 
Ekman layers, in which the flow is directed radially outwards from the centre of the semi-circular 
region, as well as that of the side-wall Stewartson layers, which carry axial transports that balance 
the radial Ekman-layer transports. A somewhat odd reversal of the axial momentum transport 
along the flat wall is observed at t=0-7Tin Figure 8(b). This phenomenon is obviously associated 
with the passage of the separation point (see Figure 5(b)), which in turn implies rapidly changing 
velocity gradients in the horizontal plane. The resulting excessive horizontal mass flux into the 
computational cell next to r = O  at the free surface can only be compensated by a fairly strong 
downward motion at the flat wall. 

Another flow reversal is taking place in the Ekman layer in the vicinity of the centre of the 
horizontal bottom, i.e. near r = R/2, at t =  1.8T (Figure 8(e)). The reversal of the Ekman layer 
transport is followed by a sudden change in the entire secondary circulation pattern (see Figure 
8(f)). This event takes place when the centre of the original anticyclonic cell (being pushed by the 
gradually increasing cyclonic cell at the curved wall) passes the vertical symmetry plane, thereby 
changing the direction of the radial velocity component. Then, at t = 3.6 T, a weak and wavy flow 
is directed radially from the curved wall towards the plane wall (Figure 8(g)). 

The presence of the bottom Ekman layer can also be clearly observed in the vertical 
distribution of the azimuthal velocity in the vertical ( I ,  z)-plane at 8 = n/2, see Figure 9. According 
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to the velocity profiles, the thickness of the bottom layer is approximately OScm, which 
corresponds with the theoretical estimate 6 x LRe- ' I 2 ,  with L a typical horizontal scale and Re 
the Reynolds number based on L. Also, the profiles clearly exhibit the characteristic velocity 
overshoot, which is only resolved with the highly non-uniform grid distribution in vertical 
direction (see Figure 3(b)). When a somewhat coarser grid is used (16 instead of 23 vertical grid 
volumes), the overshoot peaks are not captured. 

(a) -0.2 -0.15 -0.1 -0.05 0 ", (m/s )  

(b) - O . '  -0.05 

Figure 9. (Continued) 
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Figure 9. Graphs showing the calculated evolution with time of the vertical distribution of the azimuthal velocity 
component ug in the 'vertical midplane (0 = 4 2 )  for different radial positions: (a) r = 0.2R (b) r = 0.4R (c) r = Q6R; (d) r 

=@8R. The times correspond with those of Figure 5 

It is clearly seen from the velocity profiles that the flow outside the bottom layer is (in most 
stages of the adjustment process) essentially 2D, confirming the assumption that the free-surface 
flow is indeed representative of the flow at lower levels. The velocity profiles show gradual 
changes during the spin-up process due to changes in the horizontal flow pattern (see Figure 5), 
while the thickness of the Ekman layer remains approximately constant. At about t =2.4 T, 
however, a dramatic change in the vertical distribution of the azimuthal velocity takes place near 
the centre of the flow domain, in particular at r =0*4R and 0-6R (see Figures 9(b) and 9(c)). This 
change is associated with a locql breakdown of the Ekman layers, and corresponds with an 
intense upwash of fluid in the centre of the flow domain ( r=0*5R)  at this particular instant (see 
also Figure 8(f)). Then, at t = 3.6T, the Ekman layer has been reestablished (see Figures 9(b) and 
9(c)), although the flow in the central area is still not r-independent at that stage. When the 
simulation was carried on for another 0.36 T, a reestablishment of the two-dimensionality of the 
bulk flow was observed, while the internal waviness decayed. 

Important information about the predicted flow behaviour in the first stages of the spin-up 
process is provided by the isovorticity contour plots displayed in Figure 10. The sequence of plots 
clearly shows that in the initial stage the predicted vorticity in the interior has indeed a uniform 
value (as was assumed in the analytical approach to this flow, see van HeijsP), and that narrow 
regions of large positive vorticity occur along the sidewalls of the flow domain (Figure lqa)). The 
occurrence of these regions is directly associated with the viscous boundary layers in which 
positive vorticity is generated. In the next stage, see Figure lqb), these regions are observed to 
grow in size; comparison with the corresponding velocity vector plot (Figure 5(b)) reveals that 
flow separation has started at this stage, and that return flows occur in those regions with positive 
vorticity. In the next few stages it is seen how the positive vorticity areas become larger, and 
gradually move away from the boundaries (Figures lqc)-lqe)): their positions coincide with 
those of the cyclonic cells visible in Figure 5. 

An important point worth noting is the changing distribution of negative vorticity in the flow 
domain. Initially, the negative vorticity was almost uniformly distributed over the area, with some 
regions of larger gradients adjacent to the viscous shear layers (see Figure lqa)). The sequence of 
vorticity contour plots clearly shows the eventual formation of a single cell of negative vorticity in 
the centre, with some narrow regions of negative vorticity against the flow boundaries, as a 
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consequence of the boundary layers due to the cyclonic cells (Figure lqf)). Once this cellular 
pattern is established, the vorticity shows a remarkably smooth distribution over both the positive 
and the negative vorticity cells: although initially large gradients and high-vorticity values occur 
in the viscosity-dominated regions (Figure lqa)), once the cells have separated from the walls the 
gradients become gradually weaker, while the extreme values are seen to decrease (Figure Iqf)). 

The vorticity contour plots thus clearly demonstrate the crucial role the boundary layers at the 
sidewalls of the container play during the first stages of the spin-up process: they are responsible 

Figure 10. (Continued) 
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Figure 10. (Continued) 
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Figure 10. A sequence of isovorticity plots corresponding with the sequence shown in Figure 5. The contours represent 
the predicted vertical component o, of the vorticity at the free surface. Contours are plotted for the range - l.O<w,Q 1.0 
with Ao,=O.2 s-’ and with Ao ,=2 .0  s - ’  outside this range. Regions of positive and negative vorticity are indicated by 
solid and broken lines, respectively: (a) t=0,4T; (b) t=O7T (c) t= l.OT, (d) t= 1.3T; (e) t= 1 4 T ;  ( f )  t=2.4T; (g) t=3 ,6T  

for the viscous production as well as the adoection of cyclonic vorticity, which leads to the 
generation of the cyclonic flow cells. One thus obtains clearly recognizable regions of positive and 
negative vorticity, which tend to grow (owing to the 2D nature of the flow) until they reach the 
physical boundaries (sidewalls), after which they fill the entire flow domain according to some 
regular cellular pattern. It is in this quasi-ultimate stage that the bottom Ekman layer comes 
seriously into play: it  drives a secondary circulation within each individual cell, which results in 
the spin-up or spin-down of the cells similar to the flow in an axisymmetric container as 
considered by Greenspan and Howard.2 Because the formation of the cellular pattern is already 
established within a few revolutions of the system, the total spin-up time (i.e. the time required for 
the fluid to reach the final state of solid-body rotation with angular velocity Q) is effectively equal 
to the classical Ekman timescale TE = H/(vR)”’. 

5. CONCLUDING REMARKS 

The primary purpose of the present work was to simulate the 3D spin-up flow in a semicircular 
container by solving the time-dependent Navier-Stokes equations for incompressible fluid 
motion. Computed results were compared with laboratory observations and essentially good 
agreement was obtained during the first stages of the spin-up process. It can, therefore, be 
concluded that the Navier-Stokes equations (without any turbulence model) realistically model 
the start-up flow, and that the present numerical scheme is capable of solving this mathematical 
model with an acceptable degree of accuracy. 

Moreover, the numerically simulated flow field revealed some important information about the 
3D flow phenomena: 

(i) The bulk flow (outside the viscous boundary layers) is essentially 2D. 
(ii) The thickness of the Ekman layer remains approximately constant during the simulation. 
(iii) An unexpected reversal of the secondary circulation pattern takes place when the anti- 

cyclonic cell shifts its position. 

In the latest stage of the simulation the organization of the cell pattern became essentially 
different from the laboratory flow. While the observed shift of the cyclonic cells towards the centre 
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of the domain has been ascribed to the presence of the free surface,’ the inviscid rigid-lid upper 
boundary condition (4) is responsible for the survival of the central anticyclonic cell in the 
simulated flow field. To capture the observed effect of the free surface in a numerical simulation, a 
mathematical model which accounts for the mass defect due to free-surface depressions associated 
with the cyclonic vortices is needed. 
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